Digital implementation of a virtual insect trained by spike-timing dependent plasticity

نویسندگان

  • Pinaki Mazumder
  • D. Hu
  • Idongesit E. Ebong
  • X. Zhang
  • Z. Xu
  • Silvia Ferrari
چکیده

Neural network approach to processing have been shown successful and efficient in numerous real world applications. The most successful of this approach are implemented in software but in order to achieve real-time processing similar to that of biological neural networks, hardware implementations of these networks need to be continually improved. This work presents a spiking neural network (SNN) implemented in digital CMOS. The SNN is constructed based on an indirect training algorithm that utilizes spike-timing dependent plasticity (STDP). The SNN is validated by using its outputs to control the motion of a virtual insect. The indirect training algorithm is used to train the SNN to navigate through a terrain with obstacles. The indirect approach is more appropriate for nanoscale CMOS implementation synaptic training since it is getting more difficult to perfectly control matching in CMOS circuits. & 2016 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks

We present a neuromorphic implementation of multiple synaptic plasticity learning rules, which include both Spike Timing Dependent Plasticity (STDP) and Spike Timing Dependent Delay Plasticity (STDDP). We present a fully digital implementation as well as a mixed-signal implementation, both of which use a novel dynamic-assignment time-multiplexing approach and support up to 2(26) (64M) synaptic ...

متن کامل

A framework for plasticity implementation on the SpiNNaker neural architecture

Many of the precise biological mechanisms of synaptic plasticity remain elusive, but simulations of neural networks have greatly enhanced our understanding of how specific global functions arise from the massively parallel computation of neurons and local Hebbian or spike-timing dependent plasticity rules. For simulating large portions of neural tissue, this has created an increasingly strong n...

متن کامل

Synchrony-Induced Switching Behavior of Spike Pattern Attractors Created by Spike-Timing-Dependent Plasticity

Although context-dependent spike synchronization among populations of neurons has been experimentally observed, its functional role remains controversial. In this modeling study, we demonstrate that in a network of spiking neurons organized according to spike-timing-dependent plasticity, an increase in the degree of synchrony of a uniform input can cause transitions between memorized activity p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Integration

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016